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Background and motivation

@ At present, cancer is considered to be one of the most com-
plicated diseases to be treated clinically and one of the most
dreadful killers in the world today.

@ “According to the World Health Organization (WHO), the num-
ber of new cancer cases is expected to increase by 70 percent
over the next two decades (World Health Organization, 2015)."
(Mahasa etc. 2016)

o Keeping in mind its devastating nature, a great deal of human
and economic resources are devoted to the research on can-
cer biology and subsequent development of proper therapeutic
measures.
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Background and motivation

@ Surgery, radiation therapy, and chemotherapy are the three tra-
ditional therapy procedures that are practised for treatment of
cancer.

@ All these procedures are characterized by a relatively low efficacy
and high toxicity for the patient.

e Compared with traditional treatment methods, emerging im-
munotherapy has great development prospects.
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Background and motivation

Mathematical models of tumour-immune system and their dynamical
behaviors, help us to understand better how host immune cells and
cancerous cells evolve and interact.

@ Adam-Bellomo 1997
Araujo-McElwain 2004

Kuznetsov etc. 1994

Galach 2003, Yafia 2006, 2007, Rihan etc. 2014
@ A.S. Perelson, G. Weisbuch, 1997

@ R. Biirger, N. H. Barton, 2000

@ M. A. Nowak, R. M. May, 2000
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Background and motivation

Kuznetsov-Taylor Model, 1994

L o A_BHT)

E: the local concentrations of effector cells (ECs); T": tumor cells
(TCs); C: effector cell-tumor cell conjugates; E*: inactivated effec-
tor cells; T%: "lethally hit" TC cells, which are destined to perish,
and also called “programmed to die".
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Background and motivation

dE = (s+F(C,T) = diE — kiET + (k_1 + k)C) dt
AT = (aT(1 — bT) — K1 ET + (k_1 + k3)C) dt,
daC = (k‘lET (k? 1+ ko —|—/€3)C) dt,

AE* = (ksC — doE")dt,

AT* = (koC — dsT*)dL.

Kuznetsov 1992, Kuznetsov etc. 1994 revealed

fC dC
FloT) =12, S«
(€. T) g+T’ dt 0,
namely,
k1
C~KET, K=—— %+
ko + k3 +k_1

X. Li Dynamical Behaviors of Stochastic Tumor-Immune Model



Background and motivation

Kuznetsov-Makalkin-Taylor-Perelson, 1994
proposed a simplified tumour-immune model

dz(t) = <U+ n-(l-)y(g) ,ux(t)y(t)—é:n(t)) dt, (1)
dy(t) = (ay(t) - By*(t) — z(t)y(t)) dt,

where x represents non-dimensional local concentration of EC,
y represents non-dimensional local concentration of TC.

Local and global bifurcations for parameters were calculated,
and the possible connection between two different mechanisms
of the tumor: tumor dormancy and sneaking through was illus-
trated.
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Background and motivation

In the tumor tissue, the growth rate and cytotoxic parameters are
influenced by many environmental factors, e.g., the supply of nutri-
ents, chemical agents, temperature, etc. Due to the complexity, it is
unavoidable that in the course of time the parameters of the system
undergo random variations which give them a stochastic character,
refer to

@ N.S. Goel, N. Richter-Dyn, 1975

@ R.P. Garay, R. Lefever, 1978

@ A. Mantovani, P. Allavena, A. Sica, 2004

@ R.L. Elliott, G.C. Blobe, 2005
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Background and motivation

Considering the impact of the stochastic volatility of environment,
we assume that environmental fluctuations mainly affect the culling
rate of ECs § and the intrinsic growth rate of TCs «

—0dt — —o0dt 4+ 01dBy(t), adt — adt + o2dBa(t).

Thus, the stochastic tumor-immune model is described by

da(t) = (0 + ’m ~ x()y(t) — 5x(t)>dt + oz(t)dB (2),

ay(t) = y()(a—By() —2(t) )dt + o2y(t)dBs(t).
2)
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Background and motivation

@ Lyapunov exponent method and Fokker— Planck method are
used to investigate the stability of the stochastic models by
numerical simulations.

o Mukhopadhyay-Bhattacharyya, 2009
analyzed the stochastic stability for a stochastic virus-tumor-
immune model.

e Oana-Dumitru-Riccardo, 2013
studied the stochastic stability of the stochastic Kuznetsov—
Taylor model near their equilibriums.
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Background and motivation

@ L, Song, Xia, Yuan, 2019
obtained the criteria to the asymptotic behavior of (1) including the
stochastic ultimately boundedness in moment, the limit distribution
as well as the ergodicity.

@ Tuong, Nguyen and Yin, 2020
obtained the sufficient and nearly necessary threshold-type condition
for the permanence and extinction of TCs, which extends our result
to a better version.
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Background and motivation

Due to the sudden change of temperature, virus and other physi-
cal factors in biochemical reactions, the tumor-immune model may
experience abrupt changes in their parameters.

e Continuous-time finite-state Markov chain is widely used to
characterize this kind of environmental noise in different math-
ematical models,

@ The dynamics of the stochastic differential equations (SDEs)
modulated by Markov chain are full of uncertainty.

@ The theory of SDEs with Markovian switching is systematically
introduced in Mao-Yuan 2006, Yin-Zhu 2009.
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Background and motivation

Therefore, to describe the interaction of ECs and TCs more precisely
in random environmental, it is reasonable to consider the stochastic
tumor-immune system with Markovian switching

da(t) = (otrte)) + LD — ur)aternte
—3(r()a(t) )t + k1 (r(8)) (1) (1), 3)
ay(t) = y(t)(alr(®) = BrO)y(t) - x(t) )t
0o () y(£)dBs (1),

with an initial value z(0) = z¢9 > 0,y(0) = yo > 0,7(0) = 19 €
S (S=(1,2,---myg)), where r(t) is a Markov chain, all parameters
are positive constants.
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Background and motivation

Assume that the Markov chain is irreducible and 7 = (71, 72, - -+ , T )
is the stationary distribution. Define

Ry :={zeR:z >0},

RY :={z €R: x>0},

RZ = {(z,y) eR*: 2 >0, y > 0},

R = {(z,y) e R?: 2 >0, y > 0},

]Ri’* = {(z,y) ER*: 2 >0, y > 0}.
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Global positive solution

The following assertions hold.

(1) For any initial value (xo,yo,70) € Ri’* x S, model (3) has
a unique global positive solution (x(t),y(t),r(t)) for all t >
0 with probability one. In addition, the solution process
(x(t),y(t),r(t)) is a strong Feller and Markov process with tran-
sition probability denoted by P(t,z,y,r,-).

(ii) For any p > 0 sufficient small and ¢ > 0 sufficient large, there
exists a positive constant K (p, c) such that

limsup E[(1 + z(t) 4 ey(t))P] < K (p, c). (4)

t—o00
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Global positive solution

Consider the first equation of (3) on the boundary y(¢) = 0, that is

da(t) = (o(r(t)) = o(r(t))z(t))dt + k1 (r())Z()ABL(E).  (5)

The solution pair (Z(t),r(t)) of (5) has a unique invariant measure
v on [0,00) xS and v((0,00) x S) = 1.

v X 0o can be regarded as the invariant measure of (z(t),y(t),r(t))
on the boundary of R? x S.
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Global positive solution

The invariant measure v of the process (Z(t),r(t)) has the property

% /Oo axv(dz,i) = % W;Ui.
=10 =1

Proof. By the similar techniques as (4),

E[(zt)'P]< K, Vt>0. (6)

The desired assertion comes from the uniform integration of fot Z(s)ds/t
and the ergodicity of Z(t).
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Global positive solution

Utilizing the generalized 1t6 formula, we obtain that

L Inwo 1/ ko (r(5))dBa(s). (7)

0

If y(t) is small, z(t) ~ Z(t). Therefore, for sufficiently large ¢ we

have
¢ [t a7 [

Then the Lyapunov exponent of y(¢) can be approximated by
A= Zw»(a- L - ﬁ)
. : 7 7 9 2 5@ .
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Extinction: The case A < 0

Lemma
Assume X < 0. Then for any ¢ > 0 and H > 0, there exists a
positive constant v, such that

Iny(t
IP)xo,yo,ro{ lim ny(t) = )\} >1-—g¢,

t—o00 t

for all (x0,y0,70) € [0, H] x (0,7] % S.
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Extinction: The case A < 0

Theorem

2%
Assume A < 0. Then for any (zo,y0,70) € RL™ xS, (x(t),y(t),
7(t)) has a unique invariant measure v x &, on R% x S, and TCs go
extinct exponential fast almost surely, i.e.,

]P’{ lim Y0 _ )\} — 1.

t—o00 t
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Extinction: The case A < 0

Prove it by contradiction. Lemma implies that (z(t),y(t),r(t)) is
transient on IR{%;O x'S. Hence, (z(t),y(t),r(t)) has no invariant mea-
sure on Ri’* x S. Then v X g is the unique invariant measure of
(x(t),y(t),7(t)) on RZ x S. Fix (z0,y0,70) € RZ* x S. Then the
sequence of the occupation measures

1 t
) = 1 [ Proamrol(2(6).3(5).7()) € -}
is tight on RZ x S. v X dp is the uniquely weak limit of IT, . . (-).
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Extinction: The case A < 0

Then for any € > 0, 71 > 0, there exists a Ty > 0 such that for any
T > T(],

7
[ Prvannty@) <3/ 7> 1.
0
Define a stopping time 7 := inf{t > 0 : y(t) < y1}. Therefore,
P{+ <T}>1—c.

Applying the strong Markov property and Lemma, we have

IP’{ lim lnz(t) - A} > 1— 2.

t—o00
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Permanence: The case A > 0

Assume N\ > 0. Then (z(t),y(t),r(t)) has a unique invariant mea-
sure v* on Ri’o X S. Moreover, for any (xo,yo,i0) € Ri’* xS,

lim || P(t, 2o, Yo, 40, ) — v*(*)|l7v = 0. (8)
t—o00
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Permanence: The case A > 0

Prove it by contradiction. Assume that there is no invariant measure
of (x(t),y(t),(t)) on R x'S. Then (x(t),y(t),(t)) also has no
invariant measure on Ri’* x S. This implies that v x dg is the unique

invariant measure of (z(t),y(t),r(t)) on R: x S. {1}, ..t >1}
is tight. Hi‘myo,io converges weakly to v x dg as t — co. Then

: I
Jim By [ w(s)ds =0,

1 t o ;04
lim E o= ds = .
Jim Io,yoﬂot/o z(s)ds 2} 5
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Permanence: The case A > 0

This together with the Jensen inequlity implies

0< limwg hmw:o'

t—o00 t t—00

As a consequence, this constraction reveals that there must ex-
ist an invariant measure v* of (z(t),y(t),r(t)) on Ri’o x S. One
notices that the diffusion coefficient is nongenerate in any com-
pact set of Rio x S. Then, for any ¢ty > 0, the skeleton process
{(xz(nto),y(nto), r(nto)), n € N} is irreducible and aperiodic. Thus
by the similar argument as [Hening-Nguyen, 2018], we obtain the
desired assertions.
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Permanence: The case A > 0

We proceed to analyze the property of v*. Define
[y, 1) = piy/(mi +y) — iy, y > 0,i €.
The monotonicity analysis of f implies
f(y,i) < h? foranyy>0. (9)

Introduce an auxiliary process 1 (t) with respect to x(t) described by

) (t))dt

dip(t) = (o(r(t)) — (3(r(t)) — h*(r (§
t),

+ Fdl(T t) ( )dBl(
»(0) =z >0, r(0)=rg €S.
The comparison theorem shows that, z(t) < v(¢) a.s. for all ¢ > 0.
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Permanence: The case A > 0

Introduce an auxiliary process o(t) with respect to y(t), that is

{ dp(t) = p(t) (alr(t)) — B(r(t)p(t))dt + ra(r(t))(t)d Ba(t),
©(0) =90 >0, r(0)=ryeSs.

By the stochastic comparison theorem, we have

y(t) < p(t) ass. for all ¢t >0.
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Permanence: The case A > 0

Assume A > 0. Then

;[mz (s gt - /R g7 (dn )
g;zom[g(al—@mwﬁ SR
=1
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Permanence: The case A > 0

Assume A > 0 and miél{ai} > 0. Then
1€

;[im(% - 380 -2)]" < Z;/R yv* (e, dy, )

X. Li Dynamical Behaviors of Stochastic Tumor-Immune Model



Examples and numerical simulations

Examples and numerical simulations

We select the data in [Kuznetsov-Makalkin-Taylor-Perelson,1994]

and [Siu-Vitetta-May-Uhr,1986]. We firstly discuss the tumor-immune
model in environment 1

da(t) = (a Ly ) — 6m(t))dt

n+y(t)
+ /11(1)1'(25)(131(15),
dy(t) = (ay(t) — By*(t) — x(t)y(t))dt + ra(1)y(t)d Ba(t),

(10)
where k1(1) = 0.2, k2(1) = 0.25, and z(0) = 5, y(0) = 50.
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Examples and numerical simulations

Using the non-dimensionalization method in [Kuznetsov-Makalkin-
Taylor-Perelson,1994] yields coefficients in the model (10) as follows

— S
0= roEgTo
=" =0.00311,

n
o= 1 =1.636,

B =10 =3272x 1073,

Then we compute

= 0.1181,

p1 = 4 = 0613,
5= 4= 0.3743,

n= 4 = 20.19,

a—k3(1)/2—0/6 =1.2892 > 0.

ECs and TCs in (10) are permanent and have a unique invariant

measure.

X.

Li
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Examples and numerical simulations

(a) The sample paths of x(t) (b) The sample paths of y(t)

x(ty)
- - X(twy)
sl Xty | 4
X(tew)

Figure: Sample paths of x(¢), y(¢) for (10).
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Examples and numerical simulations

The empirical density for system (5.1)

y X

Figure: The empirical density of (10) using 1000 sample points and time
t = 200.
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Examples and numerical simulations

We then discuss the tumor-immune model in environment 2

da(t) = (a 4222 OV ) — 5x(t))dt

n+y(t)
+"61( ) (t)dBi(t),
dy(t) = (oy(t) = By>(t) — x(t)y(t))dt + k2 (2)y(t)dBa(t).
(11)
The binding rate of EC to TC will be increased when the immune
response of EC to TC is strong. Let py = 0.712, k1(2) = 0.4,

k2(2) = 2, and z2(0) = 5, y(0) = 50. Compute
a—r2(2)/2—0/5 = —0.6795 < 0.

TCs become extinct while the measures of ECs converge to the u-
nique invariant one corresponding to the inverse gamma distribution
IG(5.67875,1.47625).
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Examples and numerical simulations

(a) The sample paths of x(t) 0 (b) The sample paths of y(t)
——X(tw,) ——y(twy)
— — X(tew,) 80 — = Ytw,)
X(twy) 70 y(tws)
X(tw,) Yltew,)
60
=7
=
40 100
30
s0 &‘
20
'
b A 10 o L O |
boohobdo ittt B | T
50 100 150 200 0 50 100 150 200

t t

Figure: Sample paths of x(t), y(¢) for (11).
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Examples and numerical simulations

The empirical density of ECs
T T T

4 T T
the inverse Gamma 1G(5.67875,1.47625
3t — — the ECs of system (5.2) i
oL i
1Lk i
0
0 0.2 0.4 0.6 0.8 1 1.2

Figure: The empirical density of ECs of (11) using 1000 sample points and
time t = 200.
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Examples and numerical simulations

Due to the random environmental change, tumor-immune system
switches between two habitat (10) and (11).
Case 1 Let the generator of Markov chain r(t)

-3 3
(1)
Then its stationary distribution is 7 = (m,m2) = (i, %) . Com-

pute
A= —0.1873 < 0.

Thus, TCs become extinct while the measures of ECs z(t) con-
verges to the unique invariant one.
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Examples and numerical simulations

o 100 200 o 100 200 o 100 200
t t t

Figure: Case 1. For (3) figure (a), (b) and (c) plot a sample path of (),
x(t) and y(t), respectively; figure (d), (e) and (f) plot another sample
path of r(t), z(t) and y(t), respectively.
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Examples and numerical simulations

The empirical density of ECs

— the ECs of system (1.3) I

— — the ECs of system (5.2)

Figure: Case 1. The empirical density functions of ECs z(t): solid line for
(3); dashed line for (11), using 1000 sample points and time ¢ = 200.
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Examples and numerical simulations

Case 2. Consider the generator of Markov chain r(t)

-1 1
(7))
Then the unique stationary distribution is 7 = (my,m2) = (2,3).
Compute

A=) mi(a—r5(i)/2 - 0/5) =0.633 > 0.
=1

(3) owns a unique invariant measure v* on Ri’o x S which implies
TCs and ECs are permanent.
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Examples and numerical simulations

a
2.5( ) 6 b) 3000 <)
7o
Z=1.0920
a 2008975 || 2000
2 1000
1 W
os ALY Morton °
o 100 200 ?e) 100 200 o 100 200
t t t
2.5 () 5 4000 (f)
=) =©
a4 2=1.0929 2=289.8839
2 z=0.08975 3000 z=0
. 3
=15 ~ N 2000
2
. i
0.5 o — o A ML
o 100 200 o 100 200 o 100 200
t t t

Figure: Case 2. For (3) solid lines in figure (a), (b) and (c) plot a sample
path of r(t), x(¢) and y(t), respectively; solid lines in figure (d), (e) and
(f) plot another sample path of r(t), z(t) and y(¢), respectively. Other
lines are reference lines.
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Examples and numerical simulations

The empirical density for system (1.3)

Figure: Case 2. The empirical density of the stochastic tumor-immune
model (3).
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Examples and numerical simulations

1 (a) The sample mean of 1/x(t) (b) The sample mean of y(t)
10 Z=E(1/x(1))
8
~ 6 ~
a
2
o
o 200 400 600 800

Figure: Case 2. For (3) solid lines in figure (a) and figure (b) depicts the
sample mean of 1/x(t) and y(t), respectively; the other lines are reference
lines.
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Thank You for your attention
and concern!!!
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