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At present, cancer is considered to be one of the most com-
plicated diseases to be treated clinically and one of the most
dreadful killers in the world today.
“According to the World Health Organization (WHO), the num-
ber of new cancer cases is expected to increase by 70 percent
over the next two decades (World Health Organization, 2015).”
(Mahasa etc. 2016)
Keeping in mind its devastating nature, a great deal of human
and economic resources are devoted to the research on can-
cer biology and subsequent development of proper therapeutic
measures.
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Surgery, radiation therapy, and chemotherapy are the three tra-
ditional therapy procedures that are practised for treatment of
cancer.
All these procedures are characterized by a relatively low efficacy
and high toxicity for the patient.
Compared with traditional treatment methods, emerging im-
munotherapy has great development prospects.
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Mathematical models of tumour-immune system and their dynamical
behaviors, help us to understand better how host immune cells and
cancerous cells evolve and interact.

Adam-Bellomo 1997

Araujo-McElwain 2004

Kuznetsov etc. 1994

Galach 2003, Yafia 2006, 2007, Rihan etc. 2014

A. S. Perelson, G. Weisbuch, 1997

R. Bürger, N. H. Barton, 2000

M. A. Nowak, R. M. May, 2000
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Kuznetsov-Taylor Model, 1994
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E: the local concentrations of effector cells (ECs); T : tumor cells
(TCs); C: effector cell-tumor cell conjugates; E∗: inactivated effec-
tor cells; T ∗: "lethally hit" TC cells, which are destined to perish,
and also called “programmed to die”.
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dE = (s+ F (C, T )− d1E − k1ET + (k−1 + k2)C) dt,
dT = (aT (1− bTtot)− k1ET + (k−1 + k3)C) dt,
dC = (k1ET − (k−1 + k2 + k3)C) dt,
dE∗ = (k3C − d2E∗) dt,
dT ∗ = (k2C − d3T ∗) dt.

Kuznetsov 1992, Kuznetsov etc. 1994 revealed

F (C, T ) =
fC

g + T
,

dC

dt
≈ 0,

namely,

C ≈ KET, K =
k1

k2 + k3 + k−1
.
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Kuznetsov-Makalkin-Taylor-Perelson, 1994
proposed a simplified tumour-immune model dx(t) =

(
σ +

ρx(t)y(t)

η + y(t)
− µx(t)y(t)− δx(t)

)
dt,

dy(t) =
(
αy(t)− βy2(t)− x(t)y(t)

)
dt,

(1)

where x represents non-dimensional local concentration of EC,
y represents non-dimensional local concentration of TC.

Local and global bifurcations for parameters were calculated,
and the possible connection between two different mechanisms
of the tumor: tumor dormancy and sneaking through was illus-
trated.
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In the tumor tissue, the growth rate and cytotoxic parameters are
influenced by many environmental factors, e.g., the supply of nutri-
ents, chemical agents, temperature, etc. Due to the complexity, it is
unavoidable that in the course of time the parameters of the system
undergo random variations which give them a stochastic character,
refer to

N.S. Goel, N. Richter-Dyn, 1975
R.P. Garay, R. Lefever, 1978
A. Mantovani, P. Allavena, A. Sica, 2004
R.L. Elliott, G.C. Blobe, 2005
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Considering the impact of the stochastic volatility of environment,
we assume that environmental fluctuations mainly affect the culling
rate of ECs δ and the intrinsic growth rate of TCs α

−δdt→ −δdt+ σ1dB1(t), αdt→ αdt+ σ2dB2(t).

Thus, the stochastic tumor-immune model is described bydx(t) =
(
σ +

ρx(t)y(t)

η + y(t)
− µx(t)y(t)− δx(t)

)
dt+ σ1x(t)dB1(t),

dy(t) = y(t)
(
α− βy(t)− x(t)

)
dt+ σ2y(t)dB2(t).

(2)
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Lyapunov exponent method and Fokker– Planck method are
used to investigate the stability of the stochastic models by
numerical simulations.

Mukhopadhyay-Bhattacharyya, 2009
analyzed the stochastic stability for a stochastic virus-tumor-
immune model.
Oana-Dumitru-Riccardo, 2013
studied the stochastic stability of the stochastic Kuznetsov–
Taylor model near their equilibriums.
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L, Song, Xia, Yuan, 2019
obtained the criteria to the asymptotic behavior of (1) including the
stochastic ultimately boundedness in moment, the limit distribution
as well as the ergodicity.
Tuong, Nguyen and Yin, 2020
obtained the sufficient and nearly necessary threshold-type condition
for the permanence and extinction of TCs, which extends our result
to a better version.
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Due to the sudden change of temperature, virus and other physi-
cal factors in biochemical reactions, the tumor-immune model may
experience abrupt changes in their parameters.

Continuous-time finite-state Markov chain is widely used to
characterize this kind of environmental noise in different math-
ematical models,
The dynamics of the stochastic differential equations (SDEs)
modulated by Markov chain are full of uncertainty.
The theory of SDEs with Markovian switching is systematically
introduced in Mao-Yuan 2006, Yin-Zhu 2009.
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Therefore, to describe the interaction of ECs and TCs more precisely
in random environmental, it is reasonable to consider the stochastic
tumor-immune system with Markovian switching

dx(t) =
(
σ(r(t)) +

ρ(r(t))x(t)y(t)

η(r(t)) + y(t)
− µ(r(t))x(t)y(t)

−δ(r(t))x(t)
)

dt+ κ1(r(t))x(t)dB1(t),

dy(t) = y(t)
(
α(r(t))− β(r(t))y(t)− x(t)

)
dt

+κ2(r(t))y(t)dB2(t),

(3)

with an initial value x(0) = x0 ≥ 0, y(0) = y0 > 0, r(0) = r0 ∈
S (S = (1, 2, · · ·m0)), where r(t) is a Markov chain, all parameters
are positive constants.
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Assume that the Markov chain is irreducible and π = (π1, π2, · · · , πm0)
is the stationary distribution. Define

R+ := {x ∈ R : x ≥ 0},
R0
+ := {x ∈ R : x > 0},

R2
+ := {(x, y) ∈ R2 : x ≥ 0, y ≥ 0},

R2,0
+ := {(x, y) ∈ R2 : x > 0, y > 0},

R2,∗
+ := {(x, y) ∈ R2 : x ≥ 0, y > 0}.
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Theorem
The following assertions hold.
(i) For any initial value (x0, y0, r0) ∈ R2,∗

+ × S, model (3) has
a unique global positive solution (x(t), y(t), r(t)) for all t ≥
0 with probability one. In addition, the solution process
(x(t), y(t), r(t)) is a strong Feller and Markov process with tran-
sition probability denoted by P(t, x, y, r, ·).

(ii) For any p > 0 sufficient small and c > 0 sufficient large, there
exists a positive constant K(p, c) such that

lim sup
t→∞

E[(1 + x(t) + cy(t))1+p] ≤ K(p, c). (4)
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Consider the first equation of (3) on the boundary y(t) = 0, that is

dx̃(t) =
(
σ(r(t))− δ(r(t))x̃(t)

)
dt+ κ1(r(t))x̃(t)dB1(t). (5)

The solution pair (x̃(t), r(t)) of (5) has a unique invariant measure
ν on [0,∞)× S and ν((0,∞)× S) = 1.

ν × δ0 can be regarded as the invariant measure of (x(t), y(t), r(t))
on the boundary of R2

+ × S.
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Lemma
The invariant measure ν of the process (x̃(t), r(t)) has the property

m0∑
i=1

∫ ∞
0

xν(dx, i) =

m0∑
i=1

πiσi
δi

.

Proof. By the similar techniques as (4),

E[(x̃(t))1+p̃] ≤ K, ∀ t ≥ 0. (6)

The desired assertion comes from the uniform integration of
∫ t
0 x̃(s)ds

/
t

and the ergodicity of x̃(t).
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Utilizing the generalized Itô formula, we obtain that

ln y(t)

t
=

1

t

∫ t

0

(
α(r(s))− 1

2
κ22(r(s))− β(r(s))y(s)− x(s)

)
ds

+
ln y0
t

+
1

t

∫ t

0
κ2(r(s))dB2(s). (7)

If y(t) is small, x(t) ≈ x̃(t). Therefore, for sufficiently large t we
have

1

t

∫ t

0
(β(r(t))y(t) + x(t))dt ≈ 1

t

∫ t

0
x̃(t)dt.

Then the Lyapunov exponent of y(t) can be approximated by

λ :=

m0∑
i=1

πi

(
αi −

1

2
κ22(i)−

σi
δi

)
.
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Lemma
Assume λ < 0. Then for any ε > 0 and H > 0, there exists a
positive constant γ1 such that

Px0,y0,r0

{
lim
t→∞

ln y(t)

t
= λ

}
≥ 1− ε,

for all (x0, y0, r0) ∈ [0, H]× (0, γ1]× S.
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Theorem

Assume λ < 0. Then for any (x0, y0, r0) ∈ R2,∗
+ × S, (x(t), y(t),

r(t)) has a unique invariant measure ν × δ0 on R2
+× S, and TCs go

extinct exponential fast almost surely, i.e.,

P
{

lim
t→∞

ln y(t)

t
= λ

}
= 1.
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Prove it by contradiction. Lemma implies that (x(t), y(t), r(t)) is
transient on R2,0

+ ×S. Hence, (x(t), y(t), r(t)) has no invariant mea-
sure on R2,∗

+ × S. Then ν × δ0 is the unique invariant measure of
(x(t), y(t), r(t)) on R2

+ × S. Fix (x0, y0, r0) ∈ R2,∗
+ × S. Then the

sequence of the occupation measures

Πt
x0,y0,r0(·) =

1

t

∫ t

0
Px0,y0,r0{(x(s), y(s), r(s)) ∈ ·}ds

is tight on R2
+ × S. ν × δ0 is the uniquely weak limit of Πt

x0,y0,r0(·).
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Then for any ε > 0, γ1 > 0, there exists a T0 > 0 such that for any
T̂ > T0, ∫ T̂

0
Px0,y0,r0{y(t) ≤ γ1}dt

/
T̂ > 1− ε.

Define a stopping time τ̂ := inf{t ≥ 0 : y(t) ≤ γ1}. Therefore,

P{τ̂ ≤ T̂} > 1− ε.

Applying the strong Markov property and Lemma, we have

P
{

lim
t→∞

ln y(t)

t
= λ

}
> 1− 2ε.
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Theorem
Assume λ > 0. Then (x(t), y(t), r(t)) has a unique invariant mea-
sure ν∗ on R2,0

+ × S. Moreover, for any (x0, y0, i0) ∈ R2,∗
+ × S,

lim
t→∞
‖P (t, x0, y0, i0, ·)− ν∗(·)‖TV = 0. (8)
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Prove it by contradiction. Assume that there is no invariant measure
of (x(t), y(t), r(t)) on R2,0

+ × S. Then (x(t), y(t), r(t)) also has no
invariant measure on R2,∗

+ ×S. This implies that ν× δ0 is the unique
invariant measure of (x(t), y(t), r(t)) on R2

+ × S. {Πt
x0,y0,i0

, t ≥ 1}
is tight. Πt

x0,y0,i0
converges weakly to ν × δ0 as t→∞. Then

lim
t→∞

Ex0,y0,i0

1

t

∫ t

0
y(s)ds = 0,

lim
t→∞

Ex0,y0,i0

1

t

∫ t

0
x(s)ds =

m0∑
i=1

πiσi
δi

.
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This together with the Jensen inequlity implies

0 < lim
t→∞

Ex0,y0,i0 ln y(t)

t
≤ lim

t→∞

Ex0,y0,i0y(t)

t
= 0.

As a consequence, this constraction reveals that there must ex-
ist an invariant measure ν∗ of (x(t), y(t), r(t)) on R2,0

+ × S. One
notices that the diffusion coefficient is nongenerate in any com-
pact set of R2,0

+ × S. Then, for any t0 > 0, the skeleton process
{(x(nt0), y(nt0), r(nt0)), n ∈ N} is irreducible and aperiodic. Thus
by the similar argument as [Hening-Nguyen, 2018], we obtain the
desired assertions.
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We proceed to analyze the property of ν∗. Define

f(y, i) = ρiy/(ηi + y)− µiy, y > 0, i ∈ S.

The monotonicity analysis of f implies

f(y, i) ≤ h2i for any y > 0. (9)

Introduce an auxiliary process ψ(t) with respect to x(t) described by


dψ(t) =

(
σ(r(t))−

(
δ(r(t))− h2(r(t))

)
ψ(t)

)
dt

+ κ1(r(t))ψ(t)dB1(t),
ψ(0) = x0 > 0, r(0) = r0 ∈ S.

The comparison theorem shows that, x(t) ≤ ψ(t) a.s. for all t ≥ 0.
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Introduce an auxiliary process ϕ(t) with respect to y(t), that is{
dϕ(t) = ϕ(t)

(
α(r(t))− β(r(t))ϕ(t)

)
dt+ κ2(r(t))ϕ(t)dB2(t),

ϕ(0) = y0 > 0, r(0) = r0 ∈ S.

By the stochastic comparison theorem, we have

y(t) ≤ ϕ(t) a.s. for all t ≥ 0.
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Theorem
Assume λ > 0. Then

1

σ̌

[ m0∑
i=1

πi

(
δi+

1

2
κ21(i)− h2i

)]+
≤

m0∑
i=1

∫
R2
+

1

x
ν∗(dx, dy, i)

≤ 1

σ̂

m0∑
i=1

πi

[ µ̌
β̂

(
αi −

1

2
κ22(i)

)
+ δi +

1

2
κ21(i)

]
.
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Theorem
Assume λ > 0 and min

i∈S
{ai} > 0. Then

1

β̌

[ m0∑
i=1

πi

(
αi −

1

2
κ22(i)−

σi
ai

)]+
≤

m0∑
i=1

∫
R2
+

yν∗(dx, dy, i)

≤ 1

β̂

m0∑
i=1

πi

(
αi −

1

2
κ22(i)

)
.
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We select the data in [Kuznetsov-Makalkin-Taylor-Perelson,1994]
and [Siu-Vitetta-May-Uhr,1986]. We firstly discuss the tumor-immune
model in environment 1

dx(t) =
(
σ +

ρ1x(t)y(t)

η + y(t)
− µx(t)y(t)− δx(t)

)
dt

+ κ1(1)x(t)dB1(t),

dy(t) =
(
αy(t)− βy2(t)− x(t)y(t)

)
dt+ κ2(1)y(t)dB2(t),

(10)
where κ1(1) = 0.2, κ2(1) = 0.25, and x(0) = 5, y(0) = 50.
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Using the non-dimensionalization method in [Kuznetsov-Makalkin-
Taylor-Perelson,1994] yields coefficients in the model (10) as follows

σ = s
r2E0T0

= 0.1181, ρ1 = q
r2T0

= 0.613,

µ = r1
r2

= 0.00311, δ = d
r2T0

= 0.3743,

α = n
r2T0

= 1.636, η = g
T0

= 20.19,

β = nb
r2

= 3.272× 10−3.

Then we compute

α− κ22(1)/2− σ/δ = 1.2892 > 0.

ECs and TCs in (10) are permanent and have a unique invariant
measure.
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Figure: Sample paths of x(t), y(t) for (10).

X. Li Dynamical Behaviors of Stochastic Tumor-Immune Model



Background and motivation
Global positive solution

Extinction: The case λ < 0
Permanence: The case λ > 0

Examples and numerical simulations

0
0

0.05

200 0.15

0.1

The empirical  density for system (5.1)

y

400

x

0.1

0.15

0.05600
0

Figure: The empirical density of (10) using 1000 sample points and time
t = 200.
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We then discuss the tumor-immune model in environment 2
dx(t) =

(
σ +

ρ2x(t)y(t)

η + y(t)
− µx(t)y(t)− δx(t)

)
dt

+ κ1(2)x(t)dB1(t),

dy(t) =
(
αy(t)− βy2(t)− x(t)y(t)

)
dt+ κ2(2)y(t)dB2(t).

(11)
The binding rate of EC to TC will be increased when the immune
response of EC to TC is strong. Let ρ2 = 0.712, κ1(2) = 0.4,
κ2(2) = 2, and x(0) = 5, y(0) = 50. Compute

α− κ22(2)/2− σ/δ = −0.6795 < 0.

TCs become extinct while the measures of ECs converge to the u-
nique invariant one corresponding to the inverse gamma distribution
IG(5.67875, 1.47625).
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Figure: Sample paths of x(t), y(t) for (11).
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the ECs of system (5.2)

Figure: The empirical density of ECs of (11) using 1000 sample points and
time t = 200.

X. Li Dynamical Behaviors of Stochastic Tumor-Immune Model



Background and motivation
Global positive solution

Extinction: The case λ < 0
Permanence: The case λ > 0

Examples and numerical simulations

Due to the random environmental change, tumor-immune system
switches between two habitat (10) and (11).
Case 1 Let the generator of Markov chain r(t)

Γ =

(
−3 3
1 −1

)
.

Then its stationary distribution is π = (π1, π2) =
(
1
4 ,

3
4

)
. Com-

pute
λ = −0.1873 < 0.

Thus, TCs become extinct while the measures of ECs x(t) con-
verges to the unique invariant one.
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Figure: Case 1. For (3) figure (a), (b) and (c) plot a sample path of r(t),
x(t) and y(t), respectively; figure (d), (e) and (f) plot another sample
path of r(t), x(t) and y(t), respectively.
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Figure: Case 1. The empirical density functions of ECs x(t): solid line for
(3); dashed line for (11), using 1000 sample points and time t = 200.
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Case 2. Consider the generator of Markov chain r(t)

Γ =

(
−1 1
2 −2

)
.

Then the unique stationary distribution is π = (π1, π2) =
(
2
3 ,

1
3

)
.

Compute

λ =

2∑
i=1

πi
(
α− κ22(i)/2− σ/δ

)
= 0.633 > 0.

(3) owns a unique invariant measure ν∗ on R2,0
+ × S which implies

TCs and ECs are permanent.
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Figure: Case 2. For (3) solid lines in figure (a), (b) and (c) plot a sample
path of r(t), x(t) and y(t), respectively; solid lines in figure (d), (e) and
(f) plot another sample path of r(t), x(t) and y(t), respectively. Other
lines are reference lines.
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Figure: Case 2. The empirical density of the stochastic tumor-immune
model (3).
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Figure: Case 2. For (3) solid lines in figure (a) and figure (b) depicts the
sample mean of 1/x(t) and y(t), respectively; the other lines are reference
lines.
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